The ion channel TRPA1 is required for chronic itch.

نویسندگان

  • Sarah R Wilson
  • Aislyn M Nelson
  • Lyn Batia
  • Takeshi Morita
  • Daniel Estandian
  • David M Owens
  • Ellen A Lumpkin
  • Diana M Bautista
چکیده

Chronic itch is a debilitating condition that affects one in 10 people. Little is known about the molecules that mediate chronic itch in primary sensory neurons and skin. We demonstrate that the ion channel TRPA1 is required for chronic itch. Using a mouse model of chronic itch, we show that scratching evoked by impaired skin barrier is abolished in TRPA1-deficient animals. This model recapitulates many of the pathophysiological hallmarks of chronic itch that are observed in prevalent human diseases such as atopic dermatitis and psoriasis, including robust scratching, extensive epidermal hyperplasia, and dramatic changes in gene expression in sensory neurons and skin. Remarkably, TRPA1 is required for both transduction of chronic itch signals to the CNS and for the dramatic skin changes triggered by dry-skin-evoked itch and scratching. These data suggest that TRPA1 regulates both itch transduction and pathophysiological changes in the skin that promote chronic itch.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HTR7 Mediates Serotonergic Acute and Chronic Itch

Chronic itch is a prevalent and debilitating condition for which few effective therapies are available. We harnessed the natural variation across genetically distinct mouse strains to identify transcripts co-regulated with itch behavior. This survey led to the discovery of the serotonin receptor HTR7 as a key mediator of serotonergic itch. Activation of HTR7 promoted opening of the ion channel ...

متن کامل

The Ca2+-Permeable Cation Transient Receptor Potential TRPV3 Channel: An Emerging Pivotal Target for Itch and Skin Diseases.

Temperature-sensitive transient receptor potential (TRP) channels such as TRPA1 and TRPV1 have been identified as downstream ion channel targets in the transduction of itch. As a member of the temperature-sensitive TRP family, the Ca2+-permeable nonselective cation channel TRPV3 is expressed abundantly in skin keratinocytes. Recent identification of gain-of-function mutations of human TRPV3 fro...

متن کامل

Corrigendum: Calmodulin is responsible for Ca2+-dependent regulation of TRPA1 Channels

TRPA1 is a Ca2+-permeable ion channel involved in many sensory disorders such as pain, itch and neuropathy. Notably, the function of TRPA1 depends on Ca2+, with low Ca2+ potentiating and high Ca2+ inactivating TRPA1. However, it remains unknown how Ca2+ exerts such contrasting effects. Here, we show that Ca2+ regulates TRPA1 through calmodulin, which binds to TRPA1 in a Ca2+-dependent manner. C...

متن کامل

TRP Channels and Pruritus

Itch (pruritus) is one of the most often seen sensory phenomena in clinical practice. Recent neurophysiological findings proposed the existence of a novel pruriceptive system which includes a multitude of pruritogenic (itch-inducing) peripheral mediators, itch-selective pruriceptors, sensory afferent networks, spinal cord neurons, and certain central nervous system regions. In this review, we f...

متن کامل

TRPV1 and PLC Participate in Histamine H4 Receptor-Induced Itch.

Histamine H4 receptor has been confirmed to play a role in evoking peripheral pruritus. However, the ionic and intracellular signaling mechanism of activation of H4 receptor on the dorsal root ganglion (DRG) neurons is still unknown. By using cell culture and calcium imaging, we studied the underlying mechanism of activation of H4 receptor on the DRG neuron. Immepip dihydrobromide (immepip)-a h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 33 22  شماره 

صفحات  -

تاریخ انتشار 2013